Fuel cell solutions for zero emission rail

June 2019
Ballard by the Numbers

- 700 Employees
- 2,000 Patents & Applications
- Publicly listed Company
 - 24 years Nasdaq
 - 26 years TSX
- 136 (857*) transit buses in service
- 531 (702*) trucks delivering goods
- 4 train projects on track
- 3 ships in development
- 12,000 Forklifts in operation
- $80M automobile stack development program
- Delivered 850MW of fuel cell products
- Produced 5 million MEAs
- >14M km of service for modules operating in buses
- >30,000hrs Operation of fuel cell stack in London BUSES

*Currently in construction or commissioning phase
Content

- Fuel cell technology for rail
- Applications for hydrail
- Ballard’s solution and experience with rail projects
- Hydrogen as a fuel for trains
“FCH trains offer a high technical performance, with similar flexibility and versatility as diesel-powered fleets with similar range.

FCH trains offer a reasonable economic performance and are cost competitive with diesel-powered trains where low-cost hydrogen production is possible providing zero-emission service.

FCH trains reduce greenhouse gas emissions, air contaminants and noise levels.” *(Shift2Rail – FCH-JU Study 2019)*
Fuel cells offer the environmental benefits of electrification without significant infrastructure investment and with the flexibility of diesel.
- No requirement for overhead catenary infrastructure and power substations
- No impact on existing bridges, over-path and level crossings
- Hydrail enables gradual electrification (one train at the time) aligned with budget availability
Fuel cell technology can address several rail applications

- Shunter / yard locomotives
- Regional and commuter trains (Multiple Unit – MU)
- Mainline freight trains
- Trams and light rail
- Underground mining
Rail Market Segmentation

Multiple Units:
- Passenger operation in regional transport. Medium-sized operator assumed purchasing and operating a batch of 15 FCH trains.
- Typical daily mileage of **800 km** per train and 8 to 10 hours in operation, refuelling overnight at central depot
- Flat topography with about 8 stops per hour and 10 stops per 100 km
- Average seat load factor of 50%, availability of 97% (incl. planned maintenance)

Shunters:
- **Incumbent** assumed purchasing and operating **10 FCH Shunters**
- Typical daily mileage of **120 km** per train and 12 to 16 hours in operation with an average speed of 7-10 km/h, refuelling overnight at central depot
- Flat topography with stops for assembling, disassembling and movement of railroad cars and short distance transfer runs at a shunting yard
- Average load of 500 t and availability of 97% (incl. planned maintenance)

Mainland Locomotives:
- Only cargo operations. Large incumbent assumed purchasing and operating **7 FCH mainline locomotives**
- Typical daily mileage of **1,000 km** per train and 5 to 10 hours in operation, refuelling overnight at one of four central depots
- Flat topography with about one stop per hour and one stop per 100 km
- Average load of 1,600 t and availability of 97% (incl. planned maintenance)

Source: Expert interviews, Roland Berger
The market share of fuel cell hydrogen (FCH) trains may reach up to 41% by 2030.

EU Market potential FCH trains – Scenario comparison [standard units]

Low scenario

Base scenario

High scenario

Comments

> The accumulated amount of FCH trains may reach up to 1,753 SU in 2030

> The emission reduction potential is in the range of 229,000 to 305,000 tons of CO₂ annually by 2030 purely due to FCH Multiple Units.
A Market potential in the base scenario is driven by FCH multiple units in the frontrunner markets; by shunters – in other markets

Overview of FCH train markets outlook for 2030 [standard units]

<table>
<thead>
<tr>
<th>Frontrunner</th>
<th>Low</th>
<th>Base</th>
<th>High</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>150</td>
<td>273</td>
<td>569</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>25</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>20</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>951</td>
<td>805</td>
<td>465</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Newcomer</th>
<th>Low</th>
<th>Base</th>
<th>High</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10</td>
<td>21</td>
<td>41</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>29</td>
<td>58</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>8</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>497</td>
<td>467</td>
<td>409</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Later Adopter</th>
<th>Low</th>
<th>Base</th>
<th>High</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>7</td>
<td>15</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>19</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>8</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>419</td>
<td>398</td>
<td>357</td>
</tr>
</tbody>
</table>

Comments
- The Market potential will depend on the projected diesel purchasing volumes
- Substitution of diesel trains is driven by the Multiple Units in the Frontrunner markets
- On the other hand, Shunters drive the substitution in the Newcomer and Later Adopter markets

Market share of FCH in 2030
Source: Expert interviews, Roland Berger
Under base case assumptions, FCH trains assume a cost premium of up to 14% over a diesel train.

High-level TCO assessment – Base case in 2022 [EUR/km]

- **FCH Multiple Units**: Competitive with a catenary electrified MU and assume a cost premium of EUR 0.5 per km over a diesel.
- **FCH Shunters and Locomotives**: Assume a cost premium of EUR 1.5-1.6 per km.
- **Actual TCO** will differ based on regional differences.

Source: Expert interviews, Roland Berger
Optimistic assumptions suggest competitiveness of the FCH train in all three applications with a TCO advantage up to 10%.
TCO Results – Multiple Units:
Regional multiple units with hydrogen fuel cells are already being developed or put into operation by different system integrators.

Use case – FCH Regional Multiple Unit

Usage profile¹) for TCO model

- Passenger operation in regional transport – Medium-sized operator assumed purchasing and operating a batch of 15 FCH trains
- Typical daily mileage of 800 km per train and 8 h to 10 h in operation – Refuelling overnight at central depot
- Flat topography with about 8 stops per hour and 10 stops per 100 km
- Average seat load factor of 50%, availability of 97% (incl. planned maint.)

<table>
<thead>
<tr>
<th>Power rating</th>
<th>Tractive effort</th>
<th>Max. speed</th>
<th>Hydrogen tank</th>
<th>Max. range</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>800-1,000 kW</td>
<td>90 kN</td>
<td>140 km/hour</td>
<td>~250 kg</td>
<td>~1,000 km</td>
<td>EUR 4.0-5.5 m</td>
</tr>
</tbody>
</table>

- Typical power rating²) ranges from 800 to 1,600 kW
- Typical seating capacity²) ranges from 100 to 270
- Typical maximum speed²) ranges from 100 to 160 km/hour
- Over longer distances usually higher speed
- Typical tank volume²) for a 2-car MU approx. 1,600 l of diesel
- Typical range²),³) of approximately 1,000 km
- Depends e.g. on passengers on board, stops and topography
- Consumption 0.25-0.3 kg/km

- Lifetime 30 years⁴)

1) Duty cycle data from FINE D3.1 based on EN 50591 considered speed; 0.25 liters of fuel per kilowatt hour
2) For diesel Multiple Units recently purchased in main European markets
3) Based on tank volumes and average
4) Potentially replacement/refurbishment of fuel cells or parts of it necessary after certain period

Source: Expert interviews, Roland Berger
Multiple Units are generally within the range of the TCO of incumbent technology

Detailed TCO – Multiple Unit in base case [EUR/km]

<table>
<thead>
<tr>
<th></th>
<th>Diesel</th>
<th>FCH</th>
<th>Catenary-electrified</th>
</tr>
</thead>
<tbody>
<tr>
<td>Financing</td>
<td>0.6</td>
<td>0.8</td>
<td>0.6</td>
</tr>
<tr>
<td>Train maintenance</td>
<td>0.9</td>
<td>0.8</td>
<td>0.4</td>
</tr>
<tr>
<td>Train depreciation</td>
<td>0.7</td>
<td>0.9</td>
<td>0.7</td>
</tr>
<tr>
<td>Downtime</td>
<td>0.0</td>
<td>0.1</td>
<td>0.0</td>
</tr>
<tr>
<td>Infrastructure</td>
<td>0.1</td>
<td>0.7</td>
<td>3.0</td>
</tr>
<tr>
<td>Rail track fee</td>
<td>3.5</td>
<td>3.5</td>
<td>3.5</td>
</tr>
<tr>
<td>Fuel</td>
<td>1.9</td>
<td>1.5</td>
<td>0.4</td>
</tr>
<tr>
<td>Salary</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>TCO</td>
<td>8.2</td>
<td>8.7</td>
<td>9.0</td>
</tr>
</tbody>
</table>

Source: Expert interviews, Roland Berger

Comments:
- **Main drivers** for the Multiple Unit TCO difference include:
 - Fuel
 - Infrastructure
 - Maintenance
- **The cost premium** over diesel reaches EUR 0.5 per km
- **Due to high electrification costs**, a FCH train is competitive with a catenary-electrified train given a 100 km route length
“Study concludes that it should be technically feasible to build and operate a Hydrail System for the GO network, and the system’s overall lifetime costs are equivalent to the alternative of a conventional overhead electrification system”

CH2M Hill Canada report for Go Transit (2018)
Adapting fuel cell technologies to rail applications
We have the leading technology.

- World leader in PEM fuel cells
- 2,000 patents & applications
- 850 MW of fuel cell products shipped
- Over 1,200 heavy-duty fuel cell modules shipped to date
Fuel cell system design considerations for rail

- Component choice to reduce noise level and system weight
- Flexible system layout to meet space requirements (roof-top or custom configuration)
- Protection against dust ingress (safety hazard)
- System frame design to meet shock and vibe requirements
FCveloCity® for rail applications

- 100kW building block fuel cell power modules
- Customizable packaging to meet architecture constraints
- Designed and tested to rail-specific standards
- Proven fuel cell stack durability (over 30,000hrs in service)
Ballard scope of supply

Fuel cell power module Composition:

- Control Unit (CAN)
- Pressure Regulation
- Air Humidification
- H₂ Safety Systems
- Stack Hydrogen System
- Coolant Subsystem
- Air Compressor & Motor
- Stack Contactors
- Operational control system
 - Control Management
 - DC/DC Converter
 - Power Management

Fuel Cell Power Module, 100 kW Repeating Unit:

- Fuel Cell Stack
- Tank Control Unit
 - H₂ Tanks & Pressure Relief
 - Hydrogen Storage
- 24V Power Supply
 - Power Supply
- Air/Water Separation
- Product Water Reservoir
- Product Water Drain Valve
- Air Exhaust

Power Management:

- Battery Controller
- HV Battery
- Energy Storage System
- Drive Motor
- Motor Controller
- Traction power converters
- Radiator & Fan
- Drivetrain System

Heat Management:

- Expansion Tank
- Deionized Water Filter
- Radiator & Fan

Option:

Air Inlet Filter
Ballard rail standards and product testing experience

- Experienced with automotive and rail standards (~20 international rail standards)
- Extensive testing capability: vibe & shock, EMC, noise, dust ingress
From bus to rail

- 15 years of experience in designing heavy duty fuel cell engines.
- Integration experience with multiple vehicle platform (bus, truck, train)
- Proven technology with millions of operating hours in revenue service
We have extensive experience in rail applications

- JR East commuter rail in Japan (pic)
- Light rail projects with CRRC in China
- BNSF Railway shunt locomotive in the US
- Shunt locomotive in India
- Electric train retrofit project (UK)
- New train development program with Siemens
Prototype fuel cell powered shunt locomotive

- Moves railroad cars over short distances in yard
- 300-500kW gross power with 60kg hydrogen
- Refueled at hydrogen station within railyard
- Public-private project partnership with Vehicle Projects, BNSF Railway, US Army Corps of Engineers & Ballard
Fuel cell tram demonstration project in Tangshan.

- World’s first hydrogen-powered tram in pilot test phase
- 5 stations – 14 km lines
- 40 km range up to 70km/hour
- Hydrogen refilling in 15 minutes
- 3 cars, 66 seats and 336 passenger capacity
- Powered by 2 x FCveloCity® 150kW modules
Case Study: Fuel cell tram line in Foshan

- Project with CRRC Qingdao Sifang Co, Ltd
- Expected to enter in service in 2019 in Goaming district of Foshan
- Speed up to 70km/h with 125km autonomy – 394 passengers
- 18km line with 20 stops
- 200kW fuel cell module for rail applications
Case Study: Fuel cell tram line in Foshan

Ballard scope of work:

- Develop 200kW fuel cell system for rooftop light rail applications
- Meet rail-specific design standards
- Deliver 1 fuel cell system for engineering testing at Qingdao, China
- Deliver 9 fuel cell systems for revenue service in Foshan, China
Case Study: Fuel cell tram line in Foshan

FCveloCity®-XD:
- Integrated 200kW fuel cell power module
- Robust design: reinforced frame with rigid plumbing
- Built-in fire suppression systems
- Easy service access
- Weight and noise optimized
Hydrogen Refueling Station

- Location: Zhihu Stop (First stop)
- Area: 3,700m²
- Daily Refueling Capacity: 1,000kg
- Refueling Pressure: 35MPa
- Refueling Event: 3-4 times/day (summer), 20kg/time
- Construction Company: Guolian Hydrogen
- Operation Company: Guolian Hydrogen
- Status: Under Construction
- Start of Operation: July 30, 2019 (EST)
Hydroflex project

- Conversion of a classic 'Class 319' electric unit to be supplied by Porterbrook into hydrogen powered train “HydroFlex”

- Development work has commenced and HydroFlex will undertake testing and demonstration runs in summer 2019

- Ballard supplies 100kW FCveloCity®-HD fuel cell power module to be integrated to existing electric drive as “range extender”

- The HydroFlex will retain the ability to operate across existing electric routes (on either 3rd rail or 25kV overhead power) and with the addition of a hydrogen fuel-cell it will also be capable of operating in self-powered mode, without the need for diesel engines

- This demonstrator version focuses on delivering an electric/hydrogen bi-mode to UK gauge and the need to make more effective use of existing electrification with additional emission-free running beyond the wires.

British Class 319 dual-voltage electric multiple unit
Development of a new generation of hydrogen powered EMU with Siemens
Mireo Plus – value added for our customers

- Minimum Energy Consumption
- Minimum Investment
- Minimum Maintenance Cost
- Flexible for different applications
- EMU Performance

The focus of our innovation roadmap is the improvement of life cycle cost
Hydrogen is the energy source for fuel cells

- A clean energy carrier and energy storage
- Commercially available
- Can be produced from natural gas, biogas, and electricity (including renewable sources)
- Hydrogen contributes to energy independence
Hydrogen is a zero-carbon flexible fuel

- Safe and manageable
- High power density and storage capacity
- Supplied as compressed gas or liquid
- Can also be produced on-site
- Existing infrastructure solutions
- Scalable fuelling infrastructure
The Fuel Cell Hydrogen Train Eco-System

Source: Shift2Rail – FCH-JU study 2019
“FCH trains are cost-competitive when designed for long non-electrified lines over 100 km in length;

FCH trains are especially viable for main routes with very low utilization (maximum 10 trains per day) but also for last mile transport;

High hydrogen infrastructure utilization (hydrogen refueling station, electrolyser) and low cost electricity (less than EUR 50/MWh) provide favorable conditions for the FCH technology;

FCH trains are characterized by relatively fast refuelling resulting in less than 20-minute downtimes and can be operated for more than 18 hours without refuelling.”

(Shift2Rail – FCH-JU study 2019)
Further Reading

shift2rail - FCH-JU study 2019 reports
STUDY ON THE USE OF FUEL CELLS AND HYDROGEN IN THE RAILWAY ENVIRONMENT

Metrolynx report 2018
Regional Express Rail Program Hydrail Feasibility Study Report

www.metrolinx.com
Power to Change the World®

WWW.BALLARD.COM