FCEB Webinar Series: Fundamental Components of First-Time FCEB Deployment

February 21, 2023

Webinar Contributors

Timothy Sasseen Market Development Director, Ballard

Kim Leach Market Development Manager, Ballard

Michael McDonald Operations Manager, New Flyer

Byron Somerville Program Manager, Ballard Moderator

Zero-emission adoption, & TCO

New Flyer FCEB case study

Service requirements

BALLARD Fuel Cell Electric Buses Today

Kim Leach Market Development Manager, Ballard

Ballard by Numbers

4

JALLARDFuel CellFundamentals

Unit cells combine to convert hydrogen and oxygen into electricity for power with water and heat as byproducts: **ZERO-EMISSION**

UNIT CELL: Flow Plate/MEA

FUEL CELL STACK

FUEL CELL MODULE/ENGINE

BUS POWERTRAIN

Fuel cell electric buses have evolved over the years

BALLARD A Hydrogen Bus is an Electric Bus

- Same electric drivetrain as battery electric buses
- Same maintenance and parts – excluding fuel cell power module and gas tanks

Extreme weather tolerance

JALLARD Zero-Emission Bus Options

Battery Electric Buses	Fuel Cell Electric Buses			
Eco-friendly	Eco-friendly			
Robust design	Robust design			
200-250 mi range	up to 370 mile range			
4-6-hour overnight charge	6-12 minutes fill time			
One charger per 2-3 buses	Fill station scalable by fleet size			
Diesel auxiliary heater frequently used in cold climates to maintain range	No secondary auxiliary heater required, fuel cell assists cabin heat			

Today there are multiple offerings for FCEBs

- More than 20 years of road experience
- Fuel cell module availability >97%
- More than 25,000 hours stack durability proven
- Operation in challenging routes and climates
- Buses deployed in over 70 cities worldwide
- 100 million miles on road experience (bus and truck)

Compact innovative design

FCmove[™] Platform

Low life cycle cost

Engine bay and flat configurations for easy integration

High performance, robust product with wide operating range

Powerful 100kW power output

Here for Life in the US: Bend Oregon FCmove™ Manufacturing Facility starting in 2023

U.S. manufacturing of FCmove[™]HD+ 100kW modules for North American fuel cell bus customers

BALLARD New Flyer FCEB – the CHARGE FC

Michael McDonald Operations Manager, New Flyer

Fuel Cell-Electric Propulsion in Xcelsior CHARGE FC[™]

Facts

370+ miles

on a single refueling with no off-board electric recharging.

20 years

of experience producing fuel cellelectric buses for North American operators.

Avoid 85-175 tons

of greenhouse gas per year from tailpipe emissions compared to a diesel bus.

>85M EV miles

of experience.

WHY CHOOSE A NEW FLYER FUEL CELL-ELECTRIC BUS (FCEB)?

- Zero-emission
- Extended range
- Fast re-fuel
- Quiet in operation
- Robust design & reliability
 - Xcelsior® platform
 - First 60' fuel cell-electric bus to complete Altoona
 - Only manufacturer to offer both a 40' and 60' fuel cell-electric model that qualifies for federal funding

LEADING FCEB EXPERIENCE

XCELSIOR CHARGE FC[™] TECHNOLOGY

Incorporates four (4) distinct high-performing technologies:

- Ballard Power Systems new high-performing fuel cell power module FCmove[™]-HD+
- New battery packaging designed and developed by New Flyer
- The newest, high-power, rapid-charge batteries
- Siemens new innovative traction drive system, call "ELFA 3"

ENERGY FLOW IN E-ARCHITECTURE: FCEB

A/C, BTMS, Air Compressor

FUEL CELL E-DRIVE IN TRANSIT

- It's an electric bus
 - Fuel cell enables electric drive
 - Fuel cell creates electricity to provide to ESS, ESS powers electric drivetrain
 - A 'fuel cell range-extended battery-electric bus'
 - A 'zero-emissions series hybrid'

ZE TECHNOLOGY: FUEL CELLS

- Hydrogen has high energy density
 - Can store lots of onboard energy
- FCs have poor power density
 - Poor ability to respond with agility to frequent changes in power demand

- NFI approaches FCE drive in public transit with a **balance** between the battery system (ESS) and hydrogen fuel cell system
 - 2 ESS strings (140 kWh worth of batteries)
 - 100 kW FC to recharge ESS

ZE TECHNOLOGY: BATTERIES

- High power density
 - Good at expending or accepting charge to and from e-drive system
- Modest energy density
 - Unable to make long ranges

The stop-and-go nature of transit = high flux of power demand.

It's a <u>battery application with a</u> need for range boost/recharge.

FOUR KEY TECHNOLOGIES

XCELSIOR CHARGE FC[™] INTEGRATION & LAYOUT 40-FOOT MODEL

XCELSIOR CHARGE FC[™] INTEGRATION & LAYOUT 40-FOOT MODEL

CHARGE H2TM \rightarrow CHARGE FCTM

Altoona Range @ Seated Load Weight (40' model)

Std. Duty Cycle	Manhattan	OCBC	UDDS	Average	Xcelsior CHARGE FC™	
Power Consumption (kWh/mile)	8.57	1.83	0.94	3.78	3.78	
Fuel Consumption (miles/kg)	5.32	6.91	8.33	6.86	6.86	
Fuel Cell Range (miles)	192	249	300	247	256	
Battery Range (Miles)	7	33	64	16	22	
Total Range (Miles)	199	282	364	263	278	

Real Life Results (Xcelsior CHARGE H2[™]):

350 miles (560 km) on a single fill validated during testing in Orange County

- 9.16 miles/kg (14.66 km/kg)
- 330 miles (480 km) fuel only
- 20 miles (32 km) extended battery range

- ~370 miles for Xcelsior CHARGE FC[™]
- +3.7% FC efficiency
- +35% ESS capacity (useable)

DESIGNED FOR OPERATION IN TRANSIT

- Longer high-speed capability
 - 18% fuel cell power capability enhancement
 - Larger ESS: longer times at high load
- Improved range
 - 3.7% more efficient fuel cell system
 - 35% higher energy density from next-gen HP ESS
 - Numerous weight shedding with next-gen components
- Improved maintainability
 - No cabin powertrain components
 - Improved parked cold tolerance FCmove[™]-HD+ cold start
 - Next-gen ESS enclosures rail-mount, touch-safe/quick-connects, etc.
 - Simplified e-powertrain component reduction, accessibility

BALLARD Service and Training

Byron Somerville Program Manager, Ballard

Service and Support

- Applications engineers working side-by-side with our customers to ensure the successful integration and operation of Ballard's products.
- Simulation and modeling software ensures the right fuel cell product is selected, based on vehicle drive cycle and operational requirements.
- Insights from our many years of experience with fuel cell systems help accelerate and optimize our customers' overall fuel cell vehicle design work and reduce integration risks
- We provide support during **powertrain integration**, **testing**, **certification** and **vehicle commissioning**

26

• Our after sales team takes over once the bus is on the road with comprehensive customer care packages including training, onsite assistance, warranty support, diagnostic and spare parts management.

Voice of the Customer: Predictive Maintenance, Clear and Comprehensive Data Dashboards

Predictive Tools

BALLARD

- State of Health Monitoring of key BOP components
- Key component lifetime metrics identified and tracked
- Automated analytics to tease out key information from the data

Next Generation Technician Training and Communication

JALLARD Fuel Cell Electric Bus Economic Value Proposition

Kim Leach Market Development Manager, Ballard

Timothy Sasseen Market Development Director, Ballard

JALLARD Zero-Emission Transit Should also be Sustainable

Fuel cells have a lower impact on the environment

At Ballard we:

- Design our product to minimize carbon footprint
- Refurbish fuel cell stacks at the end of life
- Re-use graphite bipolar plates
- Reclaim 95% of the platinum
- We are committed to be carbon neutral by 2030

The Demand for FCEBs in North America isGrowing - Driven by Zero-Emission Bus Transition

US Deployed and Committed FCEB's

BALLARD FTA 5339 Zero-Emission Bus Awards

FCEB LowNo's Increasing Faster than Funding

Awards for zero-emission buses are not only focused in California.

The FTA is awarding across the country, with awards increasing in dollar amounts.

BALLARD FTA 5339 Zero-Emission Bus Awards

BALLARD FCEBs Expanding Across the U.S.

AC Transit 5x5 ZEB Study

https://www.actransit.org/zeb

SR 22-570, Attachment

Zero Emission Transit Bus Technology Analysis

Volume 4 REPORT PERIOD : JANUARY 2022 - JUNE 2022 Published December 14, 2022

Leading the way to a ZERO EMISSION FUTURE.

Figure 1: 5x5 Vehicle Matrix

FLEET	DIESEL (BASELINE)	DIESEL HYBRID	FUEL CELL ELECTRIC (FCEB)	BATTERY ELECTRIC (BEB)	LEGACY FUEL CELL	
Series Grouping	1600	1550	7000	8000	FC	
Technology Type	Diesel	Hybrid	Fuel Cell	Battery	Fuel Cell	
Bus Qty	- 5	5	5	5	5	
Manufacturer	Gillig	Gillig	New Flyer	New Flyer	Van Hool	
Year	2018	2016	2019	2019	2010	
Length	40'	40'	40'	40'	40'	
Data Summary (January 2022 -	- June 2022)					
Fleet Mileage	92,128	54,660	88,188	59,549	34,533	
Life-to-Date Mileage	757,363	1,235,654	452,103	272,046	1,423,925	
Cost/Mile	\$2.29	\$3.11	\$2.52	\$1.61	\$4.15	
Cost/Mile (w/credits)	\$2.25	\$3.00	\$2.20	\$0.53	\$4.11	
Emissions (CO2 Metric Tons)	235	106	0	0	0	
Fleet Availability	89%	51%	78%	66%	57%	
Reliability (MBCRC)	10,236	5,466	6,299	59,549	3,139	
MPG (DGE)	4.0	5.3	7.9	17.7	5.5	

Industry Roll-Out Plans

GET has selected 100% FCEBs in their ZEB roll-out plan

OCTA plans to transition 100% of its 500+ buses to fuel cell models

Sunline Transit fleet will be zeroemission by 2035 with 85% FCEBs (67 units)

Sunline ZEB roll out plan 2020

Foothill Transit Study Shows Total Cost of Ownership of FCEBs Lower than BEBs

Foothill Transit's study compares the cost of deploying 20 zero-emission buses on a 42-mile roundtrip route (up to 263 miles per daily block)

Due to the range limitations of BEBs, it was determined the line will require 34 BEBs vs 23 FCEBs.

12-year Lifecycle Cost Comparison

Cost Savings with FCEB: \$12,943,726 (20%)

Foothill Transit Executive Board Meeting (July 24, 2020)

Infrastructure and Scalability

Hydrogen Infrastructure Cost Decreases as Number of Vehicles Increase

Effort and Cost

Agency	FCEB	BEB		
SunLine	\$231k/bus, 35 buses	\$64k/bus, 14 buses		
Foothill Transit	\$133k/bus, 30 buses	\$322/bus, 30 buses		
Long Beach	\$108k/bus, 125 buses	\$209k/bus, 100 buses		
AC Transit	\$90k/bus, 200 buses	\$560/bus, 530 buses		
NCTD	\$291/bus, 158 buses	\$348k/bus, 158 buses		

Fleet Size

Hydrogen – THE Grid Alternative

Gridlock is on the horizon

- 95% of the renewables needed in 2035 are backlogged today for transmission
- 20% of planned capacity for utility-scale solar projects was delayed in the first half of 2022
- U.S. transmission's 1% annual growth must more than double to an average of about 2.3% to meet federal climate goals

An alternative is needed to capture and distribute renewable energy which:

- Allows storage for indefinite periods
- Can be **readily redirected** to new places at arbitrary times
- Creates **no GHG's** or criterion pollutants
- Captures remote, intermittent renewable electricity
- Nontoxic

"Two infrastructures are cheaper that one..."

JALLARD US Federal Hydrogen Cost Reduction Programs

Bipartisan Infrastructure Law - Hydrogen Highlights

- \$8B or at least four regional clean hydrogen hubs
- \$1B or electrolysis research, aevelopment and demonstration
- \$500M for clean hydrogen technology manufacturing and recycling R&D

President Biden Signs the Bipartisan Infrastructure Bill on November 15, 2021. Photo Credit: Kenny Holston/Getty Images

- Aligns with Hydrogen Shot priorities by directing work to reduce the cost of clean hydrogen tc \$2 per kilogram by 2026
- Requires developing a National Hydrogen Strategy and Roadmap

ENERGY

THE IRA, A US DECISIVE BILL

U.S. green	Hydrogen TCO with \$3/kg_PTC							
H2 will	(\$/kg)		Electricity price (\$/MWh)					
become competitive			25	35	45	55	65	
		15%	5.1	5.6	6.2	6.7	7.3	
	load	25%	2.4	2.9	3.5	4.0	4.6	
		35%	1.3	1.8	2.4	2.9	3.5	
	ser	45%	0.6	1.2	1.7	2.3	2.8	
	roly	55%	0.2	0.8	1.3	1.9	2.4	
	Electr	65%	(0.1)	0.5	1.0	1.6	2.1	
		75%	(0.3)	0.3	0,8	1.4	1.9	
		85%	(0.4)	0.1	0.7	1.2	1.8	
		\$ 1.8	0 /kg	vs	\$1.	.5-2.5	i/kg	
	for green H2 net of PTC			fo	r grey	H2		

Why fuel cell buses

- FCEBs are commercially available today with competitive TCO to other clean transit alternatives
- FCEB can meet winter and hot summer operating conditions on most challenging routes
- FCEBs complement battery electric buses to enable 100% ZEB fleets
- Low-carbon hydrogen can be produced using local resources at same or better GHG impact as electricity
- Hydrogen refueling infrastructure offers a scalable solution compatible with transit operation today.

JALLARD

Q&A

Timothy Sasseen Market Development Director, Ballard

Kim Leach Market Development Manager, Ballard

Michael McDonald Operations Manager, New Flyer

Byron Somerville Program Manager, Ballard

Sydney Krueger Sales Representative for Ballard Power Systems, & President of Krueger Transit Consulting (KTC)

BALLARD

Webinar Series | Fuel Cell Electric Bus

BLOCK YOUR CALENDER | NEXT WEBINAR

Webinar #2: Fueling and Permitting, on March 8th, 2023

8th March, 2023 | 10:00 AM to 10:45 AM P.S.T

Registration Link will be emailed soon!

BALLARD[™]

Thank you

Tim Sasseen Director of Market Development and Public Relations, North America

Tim.Sasseen@ballard.com Tel:+1 805.705.0716

Here for life

ballard.com

Appendix

JALLARD

1991 - 1995 proof of concept

Phase 1 and Phase 2 buses, the first powered by Ballard fuel cells, are demonstrated in Vancouver, Canada

1999 - 2002 phase 4

ZEbus was operated by SunLine Transit Agency, a leader in the deployment of fuel cell electric butes: SunLine now operates 13 buses powered by Ballard.

2010 - 2020+

European rollout

Europe has led the rollout of FCEBs, with FCH JU support for six major projects. Combined, the IIVE projects will deploy nearly 300 fuel cell buses in 22 cities across Europe by the early 2020s.

2016

rapid market adoption

First 22 of 300 fuel cell buses planned for deployment in the citles of Foshan and Yunfu, China begin operation, marking the beginning of rapid market adoption in China.

1996 - 1999

phase 3

Chicago Transit Authority and BC Transit (Vancouver) each deploy three Ballardpowered fuel cell buses in revenue service for a demonstration and testing program.

2002 - 2009

Deployment of 30 fuel cell buses

In revenue service operating in

ten European cities. In addition,

deployed in Perth, Australia and

three fuel cell buses are

three in Beijing, China.

phase 5

2009 - 2014 phase 6

hybridized fleets

Deployment of 20 Ballard-powered fuel cell buses in Whistler, BC in parajunction with the 2010 Winter Dlympics and Paralympic Games. The fleet surpassed one million kilometers in operation in 2011.

TODAY commercialization Buses have passed FTA Altoma testing in US

More than 130 fuel cell electric buses powered by Ballard are Inoperation, with an additional 2,400 planned.

2017

industry milestone Ballard becomes the first fuel cell

company to power buses for more than 10 million cumulative kilometers of revenue service. Ballard-powered fuel cell buses have now traveled more than 15 million kilometers

Gridlock is on the Horizon

Renewables Installations Struggle Today, Yet Expansion Is Needed to Serve New Decarbonized Loads

- 95% of the renewables needed in 2035 are backlogged today for transmission
- 20% of planned capacity for utility-scale solar projects was delayed in the first half of 2022
- Less than a quarter of the projects that enter interconnection queues around the U.S. will make it through to completion.

U.S. transmission's 1% **annual growth** must **more than double** to an average of about 2.3% to meet federal climate goals

• EV's from passenger cars, commercial freight

47

- Decarbonization of heating and industrial processes
- <u>recent analysis</u> from the U.S. Energy Information Administration, <u>Utility-scale solar capacity delays hit 20% in first 6 months of 2022: EIA Utility Dive</u>
- Princeton University's September report, <u>Electricity Transmission is Key to Unlock the Full Potential of the Inflation Reduction</u> Act.

But Doesn't Most Hydrogen Come from Fossil? **BALLARD**

Yes, but is that a problem, or a decarb opportunity?

Not All Electricity Sources Are Equal

Ceres

State-by-State CO2 Emissions Emissions per Megawatt-Hour of Power Produced (Adjusts for Size of State)

State-by-state power production CO2 emissions – *source Ceres*

Learn more and download the report at www.ceres.org/airemissions

CO2 lb/MWh; 2012

0-400 401-800 801-1,250 1,251-1,700 1,701-2,100

Not all hydrogen fuels are equal

Source: Hydrogen Council 2021

Source Carbon-Free Renewable Power Depends on the

Carbon content is decided before the electron hits the grid, or hydrogen enters the pipe

Options for Hydrogen Supply

Hydrogen can be delivered:

Liquid hydrogen

delivery

Compressed gas trailer

Hydrogen can be generated on-site:

Steam methane reformer

Electrolyzer

What is the best option for the fleet-scale deployment of fuel cell electric buses in California?

JALLARD OCTA Liquid System

Comparing GHG Impact of a Fuel Cell System with Batteries in Typical Transit Bus

GHG Emissions Required to Produce Fuel Cell and Battery System for a Transit Bus

Based on average of 150kg of CO₂e per kWh for batteries⁽²⁾ and 70kg of CO₂ per kW for FC system

13.5 tons of CO₂ GHG emissions to produce 50kWh battery with 85kW Fuel Cell system 52.2 tonnes of CO₂ GHG emissions to produce a 350kWh battery

In summary: there are 75% less emissions generated in the production of a fuel cell power train.